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RESEARCHMEMORANDUM 

FORMULAS FOR THE ELASTIC CONSTANTS OF PLATES WITH 

INTEGRAL WAFFLE-LIKE STIFFENING 

By Norris F. Dow, Charles Libove, and Ralph E. Hubka 

SUMMARY 

Formulas are derived for the fifteen elastic constants associated 
with bending, stretching, twisting, and shearing of plates with closely 
spaced integral ribbing in a variety of configurations and proportions. 
In the derivation the plates are considered, conceptually, as more uniform 
orthotropic plates somewhat on the order of plywood. The constants, which 
include the effectiveness of the ribs for resisting deformations other 
than bending and stretching in their longitudinal directions, are defined 
in terms of four coefficients a, S, a', and S', and theoretical and 
experimental methods for the evaluation of these coefficients arehis- 
cussed. Four of the more important elastic constants are predicted bjr 
these formulas and are compared with test results. Good correlation is 
obtained. 

INTRODUCTION 

Growing interest in integrally stiffened construction, evidenced by 
such papers as references 1 and 2 and by the large forgfng press program 
(ref. 3) which will provide facilities for production, emphasizes the 
need for information on the structural characteristics of integrally 
stiffened plates. 

A primary requisite for the prediction of structural characteristics 
of plates is a knowledge of their elastic constants. In the present 
paper, therefore, formulas are derived for the fifteen elastic..constants 
associated with the bending, stretching, twisting, and shearing of plates 
with closely spaced integral ribs running in one or more directions. The 
ribbing patterns covered by the formulas are illustrated in figure 1 and 
include those considered in reference 4. The rib cross section is arbi- 
trary, although special auxiliary formulas are given for the rectangular- 
section rib with circular fillets at its base. 
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The elastic-constant formulas derived involve four coefficients 
B, a', B ' 

CX, 
for each rib which define the effectiveness of the rib in 

resisting deformations other than simple bending or stretching in its 
longitudinal direction. For most purposes a reasonably accurate evalua- 
tion of these coefficients is required. Experimental and theoretical 
methods of evaluating them  are discussed. 

As a check on the correctness of the elastic-constant formulas, the 
predictions of the form fias for four of the more important elastic con- 
stants are compared with experimental data. 

The principal symbols used are defined in appendix A. 

DEFINITION OF ELASTIC CONSTANTS 

it 
If the rib spacings are small compared to the plate width and length, 

is plausible, for purposes of studying over-all or average behavior, 
to assume that the actual plate may be replaced by an equivalent uniform  
orthotropic plate. Figure 2 shows an infinitesimal element of the equiv- 
alent plate subjected to bending moments of intensity Mx  and My, 
twisting moments of intensity Mxy, stretching forces of intensity Nx 
and NY acting in planes I and II, respectively, and shearing forces of 
intensity NW in plane 
arbitrary. 

The behavior of the 
distortion relationships 
tionships are obtainable 

III. The locations of planes I, II, and III are 

element can be described by a set of force- 
in which elastic constants appear. Such rela- 
from  reference 5. If deflections due to depth- 

wise shear are assumed to be negligible as is customary in ordinary plate 
theory, the following equations (eqs. (1') to (6’)~- of ref. 5) are obtained: 

(1) 

Qlr\ A  ‘-J z L 
3% px My  

@3q 62.5 

ay2.=jg?x-~+cy”N”+cyyNy (2) 

i? "33 @$/ 

SL%+, 
ax ay ~~ T? (3) 
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Nxy 

7xY = 2TMxy +$- 
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(4) 

(5) 

(6) 

where azw and a2w a% 
2 - ax ayf 

are the curvatures, - is the twist, eX 
ax ay 

and eY are the extensional strains in planes I and II, respectively, 
and 7xy is the shear strain in plane III. 

According to these equations, fifteen constants are needed to estab- 
lish the force-distortion relationships - namely, two bending stiffnesses 
DX =a Dy, a twisting stiffness Dxy, two stretching moduli Ex and 
Ey, a shearing modulus GW, two Poisson's ratios px and b associated 
with bending, two Poisson's ratios pIx and ply associated with 
stretching, four coupling terms C,, Cxy, Cyx, and Cyy associated 
with bending and stretching, and one coupling term T associated with 
twisting and shear. Not all these constants are independent, however, 
for, as a consequence of the reciprocity theorem for elastic structures, 
py = +x/D, and Py = Ey~'x/Ex* 

The form in which the force-distortion relationships have just been 
given is not the most convenient form for some applications, for example, 
for buckling calculations. For such purposes a more suitable form is 
obtained when the first three equations are solved simultaneously for 
Mx, My, ad Mw and these expressions are then used to eliminate M,, 

%J and MW in the last threeequations. The six new force-distortion 
equations thus obtained are 

a2w 
yy 2 

ay 
+ $$x + Cl2Ny 

My = -D2 + C21Nx + C22Ny 

(7) 

(8) 
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a2w 4" 
M w = 2Dk ax ay + 'kNxY (9) 

a2w a% Nx p2 E x = Cl1 2 + 51 - - - - 
ax aY2 + El E2 NY 

Ey = Cl2 
a2w azw - + c22 - 
ax2 

?N,+- NY 
ay2 El E2 

a% Nxy 
7xy = -2ck G + c 

(10) 

(11) 

(12) 

where cly = D2vx/ D1 and 1-9 = E21!1/E1- 

Of the fifteen elastic constants appearing in equations (7) to (12), 
two, cLx.=d %Y were also in the original set of force-distortion 
equations. The remaining constants (Dl, D2, Dk, El, E2, Ck, ~1, 
P2J Cll, C12, C21, C22, and Ck) are new. The algebraic relation- 
ships between the new and the original elastic constants are given in 
appendix B. 

METHOD OF ANALYSIS 

The analysis is made for a plate with the general pattern of ribbing 
shown in figure 3(a), which includes, as special cases, the patterns of 
figure 1. A typical repeating element of the plate is indicated by the 
short-dashed rectangle in figure 3(a) and is shown three-dimensionally 
in figure 3(b). 

The analysis is based on the assumption that each of the four rib 
segments shown in figure 3(b) may be replaced by three orthotropic sheets 
of material parallel to the skin, each one covering the entire area bxby 
and each fastened to the skin by means of many hypothetical, perfectly 
rigid, infinitesimally small bars imbedded perpendicularly through the 
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skin and sheets (see fig. 4). (!The rib is understood to include any 
fillet material but no part of the skin.) The properties of the three 
substitute sheets are so chosen that one sheet (labeled @  infig. 4) 
represents only the effectiveness of the rib in resisting stretching and 
bending in its longitudinal direction, another (labeled @  ) represents 
only the effectiveness of the rib in resisting stretching and bending in 
its transverse direction, and the third (labeled 0 ) represents only 
the effectiveness of the rib in resisting shearing and twisting relative 
to its longitudinal and transverse directions. (The transverse direc- 
tion, as used herein, is the direction in which tV is measured, see 
fig. 3.) In order for the three substitute sheets to accomplish their 
purpose, they are assigned the following properties: 

(a) Sheet @  has a volume equal to that of the rib segment it 
replaces, with its center of gravity at the same level as that of the ' 
rib. Its stretching or compressing modulus of elasticity in the direc-. 
tion of the rib is E and its modulus transverse to the rib is zero. 
Its stiffness per unit width for bending in the direction of the rib 
is equal to the bending stiffness of the rib about its centroid. divided 
by the rib spacing (i.e., bx for a y-wise rib, by for an x-wise rib, 
and bs for a skew rib, fig. 3(a)), while its bending stiffness in the 
direction transverse to the rib is zero. The shearing and twisting- 
stiffnesses and Poisson's ratios of the-sheet are assumed to be zero. 

(b) Sheet @  has a volume equal to some fraction 'S of the volume 
of the rib segment, with its center of gravity at some distance CJH 
above the middle surface of the skin. The modulus of elasticity-for 
stretching or compressing in the direction transverse to the rib is E, 

A whereas that in the longitudinal direction of the rib is zero. 
shearing, and twisting stiffnesses, and Poisson's ratios for sheet @  
are all assumed to be zero. 

__ 

: 

(c) Sheet 0 has a volume equal to some fraction S' of the volume 
of the rib segment, with its center of gravity at some distance a'H 
above the middle surface of the skin. Its modulus of elasticity for 
shearing relative to the longitudinal and transverse directions of the 
rib is G, whereas its twisting stiffness relative to these two direc- 
tions is zero, as are the stretching and bending stiffnesses and Poisson's 
ratios. 

It.is assumed that the hypothetical sheets offer no interference to 
one another. 

.&J . - ~~~ - - ~- 

On the basis of the foregoing assumptions, the integrally stiffened 
plate has been converted to a more homogeneous plate somewhat on the 
order of plywood. The assumption of rigid bars connecting the substitute 

'e sheets snd the skin is equivalent to the assumption that material lines 
normalto the surface of the plate before deformation remain straight ,- 

'@ 
5, 
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during deformation. If it is further assumed that these lines remain 
perpendicular to the surface of the plate and that the stresses are in 
the elastic range, any 
analysis may be 

of the methods used for ordinary isotropic plate 
readily extended to the present idealized structure. 

For the present purpose an energy method is adopted to determine 
the six forces a& moments necessary to maintain the prescribed uniform 

deformations a% a% a% 
2' ay2' Ex~ EY7 ax ayJ and rxy= me ew-tions 
ax 

obtained for these forces and moments in terms of the distortions are 
put in the form of equations (1) to (6) to yield formulas for the 
original elastic constants or in the form of equations (7) to (12) to 
yield formulas for the new elastic constants. 

The details of the analysis end the derivation of the elastic 
constants are presented in appendix C. The formulas obtained for these 
constants are presented in the following section and the evaluation of 
a, B, a', anti B' is discussed in two succeeding sections. 

FORMULAS FOR ELASTIC CONSTANTS 

In this section the formulas are presented for the calculation of 
the fifteen elastic constants appearing in equations 1 to 6 and the 
thirteen new constants appearing in equations 7 to 12. The formulas 
are presented for the most general type of plate considered, which is 
illustrated in figure 3. For plates with one or more sets of ribs 
omitted, the formulas also apply when the terms representing the areas 
and moments of inertia of the omitted ribs are set equal to zero. 

The formulas for the constants in the original force-distortion 
equations (1) to (6) are as follows: 

Dx = EH3 I, 
c 

- +(& - q2 - px(sg] 
S - 

(13) 
I 

(14) 

(15) 
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r ~s2(Id,- Is2) -As2&&(% -iE,)2($r-&)2-A,2 A&$$ Es)‘+ 2 % I,(~-~~,)(~-~=)+$I~(~-%)~ 
E,=EA+-- ~-~__ 

1 

A&&r- Is2) +A.&Iy(&-k~)2- A~(~&&Iy(~~- kx) - 2PyI,(&&)+A,Py(i& k$&-ir,)q 

9 . 

(16) 

Ax(I.&.-I,2)+AxAyIx($- kII)2 - A&&kI,)&I& kII) - 2AXIB(i;X-~~+ASAX(iis-k~I)(~~-Iig)~ 

EH AXYIXY 1 + %&Gy - kIII)2 

T2 clx = IyEs - *s21& - Es), 

7’2 S 
L.p = 

Y -2 
IXAS - As2Ax(Ex - ,)' 

O-8) 

(19) 

(20) 
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cxx = 

%Y = 

C yx= 

kI 1 -- EH2 
L 

AxAyG- - k%i wy(ky - “s) 
q2 - px iis 

IX - !$Ly& - Es)2 - px g 

S i ) AS 

. b.%(I;;c - ‘;s) 

x2 
- clx 

1 - ---s -.. 
EH2 

IX 
As2Ax - - - k, 

;ii2 ( 
S 

- AsAy(G - Es) 
L 

-bkl- ( AxJ$G - As% 
3 -2 :-Z&&)2+) ) 

S &=! 1 

(23) 

(24) 

(29 

-- - 
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T =_ $bY~kIII~ (27) 

The,formulas for the constants in the new equations (eqs. (7) to (12)) 
are as follows: 

I& = m3 I, - 
iI 

As2q( k - ( A2 x- Q2 
S I 

(28) 

1 

2 

. . 

. * 

I 

. ‘.. 

. . 
& 
Pl ‘> 

\’ ii? 
1; 

i 
A 

,k 

. 

. 

. 

- 

AS 
.p1= - 

AY 

AS l-9 = - 
Ax 

(29) 

(30) 

(31) 

.(32) 

(33) 

(34) 

(35.) 
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(36) 

(37) 

(38) 

(39) 

(W 

The quantities KS, &, A,, Ay, A,, ani Axy,' I;,, ky, Es, 
and Eg, I,, Iy, I,, and I W  appearing in equatdons (&3) to (40) 
are defined by the following equations: 

;“;,’ = qcAy - As2 
T2 

S 
= IJs2 f ~,4py& - &)(IEy - i;> 

S 

A,= ' 3, Awx/bY Awy/bx $J 
8 + ps sin40 + 

1 2 H H 
-P 

+b H.+ 

--. 
.’ 2 
$( B's si.n20"cos2t3 

l+l.L > 
f 
rt' ! i i . ’ @ ‘?I 

k 
..*/ 
g , _; I- _ 

(41) 

(42) 

(43) 
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{*a, 
t 0. 
C’: . 1  
Z..: AY = 1 5.p +2H 

Awxpy + AWy/bx + Aws/% 
cos 4  

x H H H 8 + 
XI l 

. 
)’ 
i ’ ; . B’s 2- sin28 cos29 

1+-P (44) 
0 

i 
‘, . IS ‘C 

"L 
. 53 A,=A---+ 

_  ,$ H 
c0s2e + ps sin28 c0s2e - 

b  '. 1  
i,, )_' .', 
Ii 

,c 
;g . 
'$I y Cl 2 sin28 c02e 

l+lJ (45) 

i 
:- %  

Axy = 2(1: p) R + !?lx $i$ 
Awx/bY -k AWy/bx 

H,ta Q @ ' 
y 2(11+ /I) H + 

<' ' '? 
AWs/bs I-, .' 0' 

H sin20 c0s2e + p, sin28 c0s2e f @ Is ' 1  &s22e. (46) 2(1+ p) .. 1 

Awylbx H .(% )+ 

t -L , ;a) G? 
$ . ',' 2  

sin20 cos2Q 1'. , 
f3,a, s iG44e + /31scx1s - 

l+lJ I 
(47) 
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, 
(48) 

sin2f3 cos2@'+ p,a, sin28 cos2f3 - 

IX 
+ Qx/"Y + =yslbs~ 1 = H3 H3 cos4e+l-p2 

T./ 

- 
q% - i;x)2sin4e + tifs(&'ts -c-- 2 & sin28 c0s2e 

I- kx) ( 7 II 
“‘,z/EP 

(51-l 
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. ,c, 
Iy 1 = 0 H % 3 + =wypx 

p') ‘&3 
+ =w;p 

H3 
sin 4 8 f 1 tsj; 2, 

12(1 - 1 ( > -pZH y 

..: 

BX 
Aw,/4, H bx _ %)2 + Awibx(Ewy _ %)2 + A%/bs [Es -f+)2s$e + 

^_ 

ps(g 
(,"' -: t'!tJ ? 

_ $)2,fi4, + pts(&'f'i< _ ‘Q2 2 

( 

,;- i\ 
- sin20 c0s2e 

++cL il 

li ;; .__, 

Is = --&)-J$)’ + lwirs sin2e t0s28 + 1 Tp2 :(&)F + 

*";i"' (Ews - T;s)2sin20 c0s2e + ps("s,- i;,)2sin2e c0s2e - 
L- 

pfs(als - i;s)2 & sin28 
( 

c0s2e 

I 
; z-, -) 

._ 

(52) :’ 

(53) 

2 sin20 c0s2e f - - %+- 2, 
l+pH kw) 

B’x 2 
AWX/% 

l+p H ( 

4 AWibs {[Cws - Ew)2sf,28 c0s2e + ps(as. - i+t'siPe c0s2e f 

BrS(a’S - Exy 2 & COG+8 
.) II I) 

(54) 

/ \ . - ~_. .~ 
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bx, by, b, the spacing of the x-wise, y-wise, and skew ribs, respec- 
tively, in. 

8 the angle of skew of the ribbing, deg 

H the over-all height of skin plus ribs, in. 

% the thickness of the skin, in. 

Equations (43) to (54) contain the quantities Aw,, Awy, and Aw 
k 

S’ 

Wx' y' Ew kw,, and Iw 
X’ 

Iwy, =d. =w s which define the areas, loca- 

tions of centroids, and moments of inertia of the ribs. For rectangular 
ribs with'circular fillets, as shown in figure 4, these quantities are 
given by the equations 

(55) 

(56) 

[- o&Q#@~~d , (57) 

‘05 01 , ,,.. ” I 
(Eq. (57) contains a factor 2 to account for the fact that there are two 
r'ibs in the skewed direction - one at an angle +8 to the x-direction 
the other at an angle -8 to the x-direction.) 

T;wx = Aw;byFb - $2 + 0.14@&(9jz $ + $ ; (58) 

H 

- 
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ii WY = 1 k(l - 2)’ + o.14(#$q~ AWy/bx 2 
H 

% 1% 
bf-- X 2H 

ys+l% -- 
b, 2H 

Iw;F = gl - $)' f (IL - 2)($ - ELJxT + o~ol(~)p-)p)3 + 

1 

o*43[$9;~$)@)~wx - $ 2 -m 0.218 5 : 2,, 2 ; ( Kg 

‘w$)x = &@ - g)’ f (1 - $5 - i;wwy)2,‘+ o.ol(~)4(3-)(y f 
c 

0.43(;)2(9@[wy - $2 - 0.218 z ; 2 2 z t !I]} 

-. 

15 

(59) 

(60) 

(61) 

(62) 

0.43(~)2&5$$[ws - $ 2 - 0.218 (-63) 

‘1, 
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The values of kI, kII, and kIII depend upon the locations of 
the centroids of the forces N,, NyJ a-d NW, respectively' imposed 
upon the plate element. (See fig. 2.) For the important case in which 

NX acts in such a plane that it produces no curvature - 

acts in such a plane that it produces no curvature 

must equal zero (see eqs. 1 and 2) and, therefore' 

k  = GAY, - As2Es + i-Q&&y - I;,) 
I 

iis 

- 

kII = 
AxAyky - As2Es + P~A,A~(~;~ - i&) 

iI2 S 

(64) 

(65) 

Similarly, for the case in which NW acts in such a plsne that it 
a% produces no twist ax ayJ T must equal zero and, therefore' 

kII1 = -5yi (66) 

If N, and Ny do act in such planes that they produce curvatures , 
a2w 
ax2 

and a2w 
G' 

the actual iocations of the forces (planes I and II) must 

be known if constants (such as E,, ~1'~~ etc.) which depend upon the 
locations of the applied forces are to be evaluated. 

EVALUATION OF a AND S 

Experimental Evaluation 

The coefficients .cxJ (3, (3" and p' occurring in the equations 
for the elastic constants express the effectiveness of a rib for resisting 
deformations other than bending and stretching in its longitudinal direc- 
tion. For the evaluation of a and S for a given set of ribs 
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,i* . . 
,:: . : : (longitudinal' transverse' or skew) probably sufficient accuracy will 

. . . . 
l . . 

be achieved from a direct experimental measurement with a simple model 
l * . having one set of ribs whose cross section and spacing duplicate those 

l :...: . of the ribs for which the coefficients a and S are being sought and 
. . . . with a value of tS equal to that of the actual plate. 

l ..: 
A double specimen of the type shown on the right-hand side of fig- 

ure 3 may first be used to evaluate S through a tension test and, then, 
one-half of the specimen may be used to evaluate cx through a bending 
test, as illustrated on the left-hand side of figure 5. The use of a 
double specimen for the stretching test is suggested because the symmetry 
will eliminate localized bending of the skin between ribs and facilitate 
the measurement of over-all strain. Because of the prevention of local- 
ized bending, the value of S should be somewhat higher than that which 
would be obtained by stretching a single specimen like the one on the 
left-hand side of figure 5. However, such an overestimate of f3 may be 
desirable if the actual plate has ribs in more than one direction' because 
then the localized curvatures associated with one set of ribs will tend 
to be reduced by the presence of the other ribs. 

The length-to-width ratio of the specimen should be great enough 
so that any end grips or heavy end sections will. offer negligible resis- 
tance to transverse contraction in the stretching test and to the devel- ' 
opment of transverse curvature in the bending test. Furthermore the width 
of the specimen should be sufficiently large compared to the rib spacing 
so that the percentage of the specimen subject to shear-lag effects 
arising at the rib ends is small. 

The use of these tests for the evaluation of a: and p will now 
be described in detail. For ease in discussion, the ribs whose a! and 
B are being sought will be assumed to be oriented in the y-direction as 
shown in figure 5. After the values of c&y and Sy have been deter- 

'mined, however, the subscript y should be changed to x or s if, 
in the actual plate, the ribs under consideration are oriented in the 
longitudinal or skew direction of the plate. 

The conditions of the stretching test illustrated in the right-hand 

side of figure 5 are - = - - Substituting these conditions 

in equation (10) and making use of equations (31)' (41)' (43)' (44), 
and (45) gives 
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y..: . ii2 . . . . 
I..: 

= EH s 
AY 

Solving for By gives 

By = 
-I 

Awy bx I 
H 

(68) 

where, for rectangular ribs with circular fillets, 
Awy/bx 

H 
is as given 

by equation (56). 

By using for N,/EHe, in the right-hand side of this equation the 
value obtained in the stretching test, sn experimental value of Sy, 
or ?Y em 

is obtained (eX is the x-wise strain averaged over at least 

one multiple of bx). 

me conditions of the bending test illustrated in the left-hand side 
of figure 5 are N, = Ny = My = 0. 'Substituting these conditions in 

.~q~&~ion (1) and makingsuse of equations (131, (W), ha, (471, (kg), 
, ad (53) gives 

a2w Mx M, __~_. 1 -=-w= 
hg Dx m3 I 

(69) 

X 

__ 
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where 

I, = + (% - 'd2 

Ex = aY Awylbx 

A,' H 

Es = 0 

T2 
S 

= Is&2 - A 
SM 

Solving for CZy gives 

., .*&+/%2%%2 --~-~~~~~~~~~~~2-*~21 -rijI.+-%-(~2~~2~2)) 

gr= -~ 
~$&+q (I&2- A&A&?) - *@p-k& yz) 

m 

<where, as before, for rectangular ribs with circular.fillets, Awylbx 
H 

is as given by equation (56). 
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r . . z.: : 
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the value obtained in the bending 

y..: . 
. . . . 

2.: 

test, and for Sy the value obtained from equation (68) permits equa- 

tion (71) to yield an experimental value of 

curvature averaged over at least one multiple of b, The quantities 

respectively, with 

z; =A.& - A, 

A 
Ay = s+ 

Awy bx I 
P H 

I, = I-I %3 3 ( ) l2(1 - cl') Y 

where Ew y is as given by equation (59). 

53 
*s=*x 

i 

I 

' (72) 

Theoretical Evaluation 

Accurate theoretical analysis. of the situations depicted in figure 5 
is difficult. However, it is possible to obtain values of CY, and B 
that underestimate or overestimate the stiffness of the specimens. 

An underestimate is obviously obtained by assuming no part of the 
rib to be effective in resisting transverse stretching or bending in a 
direction transverse to itself. A lower-limit value of S is, therefore, 

p=BL;L=o (73) 

When S is taken as zero the value of cx is immaterial. 
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An overestimate is obtained by analyzing the two specimens shown 
in figure 5 for their small deformations under the assumption that plane 
sections perpendicular to the skin and perpendicular or parallel to the 
direction of ribbing remain plane. The results of such an analysis of 
the two situations illustrated in figure 5 are as follows: 

for the double specimen on the right-hand side of figure 5, and 

+ =- 1 
*3 & 

2 ax 
I-+ 

(74) 

(75) 

for the single specimen on the left-hand side of figure 5, and where I, 
g, and f are geometric properties of segments of length b, of the 
cross sections shown in figure 5. The letter I represents the moment 
of inertia of such a segment about its centroid, 
taken in the x-direction, 

g is the integral, 
of the reciprocal of the local thickness 

measured in the z-direction, and f is tS2 times a similar integral 
of the cube of the reciprocal of the local thickness. When the ribs are 
rectangular with circular fillets, these quantities are given by the 
following formulas: 

(76) 
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Q 
b, =-- & _ 2 3 + twY % -- 
ts ts ts ts H 

+ g' 

bx twy 2qY+tWytS3+f' fF---- - -- 
ts ts ( > %i ts H 

(77) 

(78) 

where g' and f' are functions of the ratio of fillet radius to skin 

thickness plotted in figure 6, Iw px and -X-- is as given by equation (62). 
H3 

The values of Nx EHs, I and MxEH3 a2w 
I 

2 obtained from equations (74) 
ax 

and (75) may be thought of a e experimental results and they may therefore 
be substituted in equations (68) and (71) to obtain values of &L and 
CX~ corresponding to an overestimate of the stiffness of the specimen. 

A lower overestimate of stiffness can be obtained by analyzing, on 
the basis that plane sections remain plane, the single specimen on the 

left-hand side of figure 5 for both Nx/EHeX and Mx NH3 e 
I 

and thus 
ax 

including the localized bending that occurs during stretching. Besides 
being more conservative, the resulting values of o+,L and &L would 
also be more appropriate %f, in the actual plate under consideration, 
there were really only one set of ribs. An upper-limit analysis con- 
ducted entirely on the specimen on the left-hand side of figure 5 would 
yield the following expression to be used in place of equation (74): 

NX -= %3/H 

=X 

12(1~- V2)@ - ;$)Z+ 1+ *f+,,, 

(79) 

H G 

where h is tS tFmes the integral, taken over a length b, in the 
x-direction, of the square of the reciprocal of the local thichess; 
for circular-filleted rectangular-section ribbing, 
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w h e r e  h ' is p lo t ted in  fig u r e  6 . E q u a tio n  ( 75 )  w o u l d  still b e  u s e d  
fo r  M x  E H 3  + $  

I 3 X  

E V A L U A T IO N  O F  Q ' A N D  B ' 
, 

1  

T h e  c o e ff icients a ' a n d  p ', wh ich  d e fin e  th e  e ffec t iveness o f ' 
a  r ib  in  res is t ing twist ing a n d  shea r i ng  re lat ive to  its long i tud ina l  
a n d  t ransverse di rect ions,  a re  n o t as  read i ly  m e a s u r e d  e x p e r i m e n tal ly  
no r  as  read i ly  b o u n d e d  by  a n  u p p e r  lim it as  a  a n d  p , a l though,  o f 
course,  a  lower- l imi t  st i f fness is o b ta i n e d  by  e q u a tin g  p ' to  zero.  4  

A n  a p p r o x i m a te  eva lua t ion  o f c X ' a n d  p ' m a y  b e  m a d e  by  a s s u m i n g  
th a t th e  s a m e  v o l u m e  o f r ib  m a ter ia l  resists shea r  as  resists t ransverse 
stretching,  th a t is, 

B ', =  P y  (81)  . 

a n d  th e n  by  c o m p u tin g  w h e r e  th is  m a ter ia l  m u s t b e  p l aced  (a') in  o rde r  
to  g ive  th e  p rope r  to rs iona l  st i f fness as  d e te r m i n e d  wi th th e  a id  o f 
re fe rence  6 . T h e  c o m p u ta tio n  o f a ' wi l l  n o w  b e  desc r ibed  in  d e tail .  

Cons ide r  a n  e l e m e n t, l ike th e  o n e  o n  th e  le f t -hand s ide  o f fig u r e  5 , 
hav ing  on ly  y -wise r ibb ing  a n d  sub jec ted  to  a  p u r e  Mxy  load ing .  F r o m  
e q u a tio n s  (3), ( 15 )  a n d  ( 54 )  o n e  csn  so lve  fo r  a 'v in  te rms  o f th e  
m e a s u r e d  o r  c o m p u te d  rat io 

@ %  --=Dl ry  
a 2 w  

ax  

=  2  E H 3  

=  . G  I+  

I 
d 2 W  

J 
M w  ax  ay  

as  fo l lows:  

+  2  ts - -- 
l+ p  H  (% J 

f / 
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RESEARCHMEMORANDUM 

FORMULAS FOR THE ELASTIC CONSTANTS OF PLATES WITH 

INTEGRAL WAFFLE-LIKE STIFFENING 

By Norris F. Dow, Charles Libove, and Ralph E. Hubka 

SUMMARY 

Formulas are derived for the fifteen elastic constants associated 
with bending, stretching, twisting, and shearing of plates with closely 
spaced integral ribbing in a variety of configurations and proportions. 
In the derivation the plates are considered, conceptually, as more uniform 
orthotropic plates somewhat on the order of plywood. The constants, which 
include the effectiveness of the ribs for resisting deformations other 
than bending and stretching in their longitudinal directions, are defined 
in terms of four coefficients a, S, a', and S', and theoretical and 
experimental methods for the evaluation of these coefficients arehis- 
cussed. Four of the more important elastic constants are predicted bjr 
these formulas and are compared with test results. Good correlation is 
obtained. 

INTRODUCTION 

Growing interest in integrally stiffened construction, evidenced by 
such papers as references 1 and 2 and by the large forgfng press program 
(ref. 3) which will provide facilities for production, emphasizes the 
need for information on the structural characteristics of integrally 
stiffened plates. 

A primary requisite for the prediction of structural characteristics 
of plates is a knowledge of their elastic constants. In the present 
paper, therefore, formulas are derived for the fifteen elastic..constants 
associated with the bending, stretching, twisting, and shearing of plates 
with closely spaced integral ribs running in one or more directions. The 
ribbing patterns covered by the formulas are illustrated in figure 1 and 
include those considered in reference 4. The rib cross section is arbi- 
trary, although special auxiliary formulas are given for the rectangular- 
section rib with circular fillets at its base. 

CONFIDENTIAL 
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The elastic-constant formulas derived involve four coefficients 
B, a', B ' 

CX, 
for each rib which define the effectiveness of the rib in 

resisting deformations other than simple bending or stretching in its 
longitudinal direction. For most purposes a reasonably accurate evalua- 
tion of these coefficients is required. Experimental and theoretical 
methods of evaluating them  are discussed. 

As a check on the correctness of the elastic-constant formulas, the 
predictions of the form fias for four of the more important elastic con- 
stants are compared with experimental data. 

The principal symbols used are defined in appendix A. 

DEFINITION OF ELASTIC CONSTANTS 

it 
If the rib spacings are small compared to the plate width and length, 

is plausible, for purposes of studying over-all or average behavior, 
to assume that the actual plate may be replaced by an equivalent uniform  
orthotropic plate. Figure 2 shows an infinitesimal element of the equiv- 
alent plate subjected to bending moments of intensity Mx  and My, 
twisting moments of intensity Mxy, stretching forces of intensity Nx 
and NY acting in planes I and II, respectively, and shearing forces of 
intensity NW in plane 
arbitrary. 

The behavior of the 
distortion relationships 
tionships are obtainable 

III. The locations of planes I, II, and III are 

element can be described by a set of force- 
in which elastic constants appear. Such rela- 
from  reference 5. If deflections due to depth- 

wise shear are assumed to be negligible as is customary in ordinary plate 
theory, the following equations (eqs. (1') to (6’)~- of ref. 5) are obtained: 

(1) 

Qlr\ A ‘-J z L 
3% px My 

@3q 62.5 

ay2.=jg?x-~+cy”N”+cyyNy (2) 

i? "33 @$/ 

SL%+, 
ax ay ~~ T? (3) 
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$3 @Lb 
Nxy 

7xY = 2TMxy +$- 
w 

3 

(4) 

(5) 

(6) 

where azw and a2w a% 
2 - ax ayf 

are the curvatures, - is the twist, eX ax ay 
and eY are the extensional strains in planes I and II, respectively, 
and 7xy is the shear strain in plane III. 

According to these equations, fifteen constants are needed to estab- 
lish the force-distortion relationships - namely, two bending stiffnesses 
DX =a Dy, a twisting stiffness Dxy, two stretching moduli Ex and 
Ey, a shearing modulus GW, two Poisson's ratios px and b associated 
with bending, two Poisson's ratios pIx and ply associated with 
stretching, four coupling terms C,, Cxy, Cyx, and Cyy associated 
with bending and stretching, and one coupling term T associated with 
twisting and shear. Not all these constants are independent, however, 
for, as a consequence of the reciprocity theorem for elastic structures, 
py = +x/D, and Py = Ey~'x/Ex* 

The form in which the force-distortion relationships have just been 
given is not the most convenient form for some applications, for example, 
for buckling calculations. For such purposes a more suitable form is 
obtained when the first three equations are solved simultaneously for 
Mx, My, ad Mw and these expressions are then used to eliminate M,, 

%J and MW in the last threeequations. The six new force-distortion 
equations thus obtained are 

a2w 
yy 2 

ay 
+ $$x + Cl2Ny 

My = -D2 + C21Nx + C22Ny 

(7) 

(8) 
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a2w 4" 
M w = 2Dk ax ay + 'kNxY (9) 

a2w a% Nx p2 E x = Cl1 2 + 51 - - - - 
ax aY2 + El E2 NY 

Ey = Cl2 
a2w azw - + c22 - 
ax2 

?N,+- NY 
ay2 El E2 

a% Nxy 
7xy = -2ck G + c 

(10) 

(11) 

(12) 

where cly = D2vx/ D1 and 1-9 = E21!1/E1- 

Of the fifteen elastic constants appearing in equations (7) to (12), 
two, cLx.=d %Y were also in the original set of force-distortion 
equations. The remaining constants (Dl, D2, Dk, El, E2, Ck, ~1, 
P2J Cll, C12, C21, C22, and Ck) are new. The algebraic relation- 
ships between the new and the original elastic constants are given in 
appendix B. 

METHOD OF ANALYSIS 

The analysis is made for a plate with the general pattern of ribbing 
shown in figure 3(a), which includes, as special cases, the patterns of 
figure 1. A typical repeating element of the plate is indicated by the 
short-dashed rectangle in figure 3(a) and is shown three-dimensionally 
in figure 3(b). 

The analysis is based on the assumption that each of the four rib 
segments shown in figure 3(b) may be replaced by three orthotropic sheets 
of material parallel to the skin, each one covering the entire area bxby 
and each fastened to the skin by means of many hypothetical, perfectly 
rigid, infinitesimally small bars imbedded perpendicularly through the 
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skin and sheets (see fig. 4). (!The rib is understood to include any 
fillet material but no part of the skin.) The properties of the three 
substitute sheets are so chosen that one sheet (labeled @  infig. 4) 
represents only the effectiveness of the rib in resisting stretching and 
bending in its longitudinal direction, another (labeled @  ) represents 
only the effectiveness of the rib in resisting stretching and bending in 
its transverse direction, and the third (labeled 0 ) represents only 
the effectiveness of the rib in resisting shearing and twisting relative 
to its longitudinal and transverse directions. (The transverse direc- 
tion, as used herein, is the direction in which tV is measured, see 
fig. 3.) In order for the three substitute sheets to accomplish their 
purpose, they are assigned the following properties: 

(a) Sheet @  has a volume equal to that of the rib segment it 
replaces, with its center of gravity at the same level as that of the ' 
rib. Its stretching or compressing modulus of elasticity in the direc-. 
tion of the rib is E and its modulus transverse to the rib is zero. 
Its stiffness per unit width for bending in the direction of the rib 
is equal to the bending stiffness of the rib about its centroid. divided 
by the rib spacing (i.e., bx for a y-wise rib, by for an x-wise rib, 
and bs for a skew rib, fig. 3(a)), while its bending stiffness in the 
direction transverse to the rib is zero. The shearing and twisting- 
stiffnesses and Poisson's ratios of the-sheet are assumed to be zero. 

(b) Sheet @  has a volume equal to some fraction 'S of the volume 
of the rib segment, with its center of gravity at some distance QH 
above the middle surface of the skin. The modulus of elasticity-for 
stretching or compressing in the direction transverse to the rib is E, 

A whereas that in the longitudinal direction of the rib is zero. 
shearing, and twisting stiffnesses, and Poisson's ratios for sheet @  
are all assumed to be zero. 

__ 

: 

(c) Sheet 0 has a volume equal to some fraction S' of the volume 
of the rib segment, with its center of gravity at some distance a'H 
above the middle surface of the skin. Its modulus of elasticity for 
shearing relative to the longitudinal and transverse directions of the 
rib is G, whereas its twisting stiffness relative to these two direc- 
tions is zero, as are the stretching and bending stiffnesses and Poisson's 
ratios. 

It.is assumed that the hypothetical sheets offer no interference to 
one another. 

.&J . - ~~~ - - ~- 

On the basis of the foregoing assumptions, the integrally stiffened 
plate has been converted to a more homogeneous plate somewhat on the 
order of plywood. The assumption of rigid bars connecting the substitute 

'e sheets snd the skin is equivalent to the assumption that material lines 
normalto the surface of the plate before deformation remain straight ,- 

'@ 
5, 
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during deformation. If it is further assumed that these lines remain 
perpendicular to the surface of the plate and that the stresses are in 
the elastic range, any 
analysis may be 

of the methods used for ordinary isotropic plate 
readily extended to the present idealized structure. 

For the present purpose an energy method is adopted to determine 
the six forces a& moments necessary to maintain the prescribed uniform 

deformations a% a% a% 
2' ay2' Ex~ EY7 ax ayJ and rxy= me ew-tions 
ax 

obtained for these forces and moments in terms of the distortions are 
put in the form of equations (1) to (6) to yield formulas for the 
original elastic constants or in the form of equations (7) to (12) to 
yield formulas for the new elastic constants. 

The details of the analysis end the derivation of the elastic 
constants are presented in appendix C. The formulas obtained for these 
constants are presented in the following section and the evaluation of 
a, B, a', anti B' is discussed in two succeeding sections. 

FORMULAS FOR ELASTIC CONSTANTS 

In this section the formulas are presented for the calculation of 
the fifteen elastic constants appearing in equations 1 to 6 and the 
thirteen new constants appearing in equations 7 to 12. The formulas 
are presented for the most general type of plate considered, which is 
illustrated in figure 3. For plates with one or more sets of ribs 
omitted, the formulas also apply when the terms representing the areas 
and moments of inertia of the omitted ribs are set equal to zero. 

The formulas for the constants in the original force-distortion 
equations (1) to (6) are as follows: 

Dx = EH3 I, 
c 

- +(& - q2 - px(sg] 
S - 

(13) 
I 

(14) 

(15) 
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1 

A&&r- Is2) +A.&Iy(&-k~)2- A~(~&&Iy(~~- kx) - 2PyI,(&&)+A,Py(i& k$&-ir,)q 

9 . 

(16) 

Ax(I.&.-I,2)+AxAyIx($- kII)2 - A&&kI,)&I& kII) - 2AXIB(i;X-~~+ASAX(iis-k~I)(~~-Iig)~ 

EH AXYIXY 1 + %&Gy - kIII)2 

T2 clx = IyEs - *s21& - Es), 

7’2 S 
L.p = 

Y -2 
IXAS - As2Ax(Ex - ,)' 

O-8) 

(19) 

(20) 
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%x = 

%Y = 

C yx= 

kI 
1 -- 

EH2 L 
*x*& - k%i w&y - “s) 

FS2 
- px 

iis 

IX - !$Ly& - Es)2 - px g 

S i ) AS 

. b.%(I;;c - ‘;s) 
x2 - clx 

1 - ---s -.. 
EH2 

IX 
As2Ax - - - k, 

;ii2 ( 
S 

- As*y(~ - Es) 
L 

-bkl- ( AxJ$G - As% 
3 -2 :-Z&&)2+) ) 

S &=! 1 

(23) 

(24) 

(25) 

-- - 
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T =_ $@~;k===~ (27) 

The,formulas for the constants in the new equations (eqs. (7) to (12)) 
are as follows: 

I& = m3 I, - 
iI 

As2q( k - ( A2 x- Q2 
S I 

(28) 

1 

2 

. . 

. * 

I 

. ‘.. 

. . 
& 
Pl ‘> 

\’ ii? 
1; 

i 
A 

,k 

. 

. 

. 

- 

AS 
.p1= - 

*Y 

AS l-9 = - 
Ax 

(29) 

(30) 

(31) 

.(32) 

(33) 

(34) 

(35.) 
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(36) 

(37) 

(38) 

(39) 

(W 

The quantities KS, &, A,, Ay, A,, ani Axy,' I;,, ky, Es, 
and Eg, I,, Iy, I,, and I W  appearing in equatdons (&3) to (40) 
are defined by the following equations: 

;“;,’ = qcAy - As2 
T2 S = IJs2 f Q&y(~ - &)(IEy - i;> S 

A,= ' 3, Awx/bY Awy/bx $J 
8 + ps sin40 + 

1 2 H H 
-P 

+b H.+ 

--. 
.’ 2 
$( B's sin20"cos2t3 

l+l.L > 
f 
rt' ! i i . ’ @ ‘?I 

k 
..*/ 
g , _; I- _ 

(41) 

(42) 

(43) 
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{em, 
t 0. 
C’: . 1  
Z..: AY = 1 5.p +2H 

Awxpy + AWypx + Awps 
cos 4 

x H H H 8 + 
XI l 

. 
)’ 

i ’ ; . 
B’s 2- sin28 cos29 

1+-P 
(44) 

0 

i 
‘, 

. IS ‘C 
"L 

. 53 As=A---+ 
_  ,$ H 

cos20 + f3s sin28 c0s2e - 
b  '. 1  
i,, )_' .', 
Ii 

,c 
;g . 
'$I 
y 

Cl 2  sin2e c02e 
l+lJ 

(45) 

i 
:- %  

Axy = 2(1: p) R + !?lx $i$ 
Awx/bY -k AWy/bx 

H,ta Q @ ' 
y 2(11+ /I) H + 

<' ' '? 
AWs/bs I-, .' 0' 

H sin20 c0s2e + p, sin28 c0s2e f @ Is ' 1  +322e. (46) 2(1+ p) .. 1 

Awylbx 
H .(%)+ 

t -L , ;a) G? 
$ . ',' 2  

sin20 c0s2e 1'. , 
f3,a, s iG44e + /31scx1s - 

l+lJ I 
(47) 
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, 
(48) 

sin2f3 c0s2e'+ p,a, sin28 c0s2e - 

IX 
+ IWx/"Y + Iyslbs~ 1 = H3 H3 cos4e+l-p2 

T./ 

- 

q% - 
i;x)2sin4e + tifs(&'ts -c-- 2 & sin28 c0s2e 

I- kx) ( 7 II 

“‘,z/EP 

(51-l 
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. ,c, 
Iy 1 = 0 H % 3 + Iwy/bx 

p') '&3 
+ 1w;p 

H3 
sin 4 8 f 1 tsj; 2, 

12(1 - 1 ( > -pZH y 

..: 

BX 
Aw,/4, H bx _ %)2 + Awibx(Ewy _ %)2 + A%/bs [Es -f+)2s$e + 

^_ 

ps(g 
(,"' -: t'!tJ ? 

_ $)2,fi4, + pts(&'f'i< _ ‘Q2 2 

( 

,;- i\ 
- sin20 c0s2e 

++cL il 

li ;; .__, 

Is = --&)-J$)’ + lw~~s d.n2e t0s28 + 1 Tp2 :(&)F + 

*";i"' (Ews - T;s)2sin20 c0s2e + ps("s,- i;,)2sin2e c0s2e - 
L- 

pfs(als - i;s)2 & sin28 
( 

c0s2e 

I 
; z-, -) 

._ 

(52) :' 

(53) 

2 sin20 c0s2e f - - %+- 2, 
l+pH kw) 

B’x 2 
AWX/% 

l+p H ( 

4 AWibs {[Cws - Ew)2sf,28 c0s2e + ps(as. - i+t'siPe c0s2e f 

Brs(a’s - Exy 2 & COG+8 
.) II I) 

(54) 

/ \ . - ~_. .~ 
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bx, by, b, the spacing of the x-wise, y-wise, and skew ribs, respec- 
tively, in. 

8 the angle of skew of the ribbing, deg 

H the over-all height of skin plus ribs, in. 

% the thickness of the skin, in. 

Equations (43) to (54) contain the quantities Awx, Awy, and Aw 
k 

S’ 

Wx' y' Ew kw,, and Iw 
X’ 

Iwy, =d. 1~ s which define the areas, loca- 

tions of centroids, and moments of inertia of the ribs. For rectangular 
ribs with'circular fillets, as shown in figure 4, these quantities are 
given by the equations 

(55) 

(56) 

[- o&Q#@~~d , (57) 

‘05 01 , ,,.. ” I 
(Eq. (57) contains a factor 2 to account for the fact that there are two 
r'ibs in the skewed direction - one at an angle +8 to the x-direction 
the other at an angle -8 to the x-direction.) 

T;wx = Aw;byFb - $2 + 0.14(3&(3$5 $ + $ ; (58) 

H 

- 
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ii wy = 1 k(l - 2)’ + O.l4(#$q~ 
AWJbx 2 

H 

% 1 ts bf-- X 2H 

b+l% -- 
b, 2H 

Iw;F = gl - $)’ f (IL - 2)($ - ELJxT + o~ol(~)p-)p)3 + 
1 

o*43($9;~$)@)~wx - $ 2 -m 0.218 5 : *,, 2 ; ( Kg 

‘w$)x = &@ - g)’ f (1 - $5 - i;wwy)2,‘+ *.o$.!!J4(3-)(y f 
c 

C1.43(;)*(9@[~~ - $ 2 - 0.218 z ; * 2 z 
(!I]} 

-. 

15 

(59) 

(60) 

(61) 

(62) 

0.43(~)2(&$$[ws - $ 2 - 0.218 (-63) 

‘1, 
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The values of kI, kII, and kIII depend upon the locations of 
the centroids of the forces N,, Ny, aa NW, respectively, imposed 
upon the plate element. (See fig. 2.) For the important case in which 

NX acts in such a plane that it produces no curvature - 

acts in such a plane that it produces no curvature 

must equal zero (see eqs. 1 and 2) and, therefore, 

k = GAY, - As*Es + i-Q&&y - I;,) 
I 

ii,* 

- 

kII = 
AxAyky - As2Es + P~A,A~(~;~ - i&) 

x* S 

(64) 

(65) 

Similarly, for the case in which NW acts in such a plsne that it 
a% produces no twist ax ay, T must equal zero and, therefore, 

kII1 = -5yi (66) 

If N, and Ny do act in such planes that they produce curvatures , 
a2w 

ax2 
and a2w 

2 
the actual iocations of the forces (planes I and II) must 

be known if constsnts (such as E,, ulx, etc.) which depend upon the 
locations of the applied forces are to be evaluated. 

EVALUATION OF a AND S 

Experimental Evaluation 

The coefficients .cx, f3, CI', and p' occurring in the equations 
for the elastic constants express the effectiveness of a rib for resisting 
deformations other than bending and stretching in its longitudinal direc- 

.tion. For the evaluation of a and !3 for a given set of ribs 
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,i* . . 
,:: . : : (longitudinal, transverse, or skew) probably sufficient accuracy will 

. . . . 
l . . 

be achieved from a direct experimental measurement with a simple model 
l * . having one set of ribs whose cross section and spacing duplicate those 

l :...: . of the ribs for which the coefficients a and S are being sought and 
. . . . with a value of tS equal to that of the actual plate. 

l ..: 
A double specimen of the type shown on the right-hand side of fig- 

ure 3 may first be used to evaluate B through a tension test and, then, 
one-half of the specimen may be used to evaluate cx through a bending 
test, as illustrated on the left-hand side of figure 5. The use of a 
double specimen for the stretching test is suggested because the symmetry 
will eliminate localized bending of the skin between ribs and facilitate 
the measurement of over-all strain. Because of the prevention of local- 
ized bending, the value of S should be somewhat higher than that which 
would be obtained by stretching a single specimen like the one on the 
left-hand side of figure 5. However, such an overestimate of f3 may be 
desirable if the actual plate has ribs in more than one direction, because 
then the localized curvatures associated with one set of ribs will tend 
to be reduced by the presence of the other ribs. 

The length-to-width ratio of the specimen should be great enough 
so that any end grips or heavy end sections will offer negligible resis- 
tance to transverse contraction in the stretching test and to the devel- ' 
opment of transverse curvature in the bending test. Furthermore the width 
of the specimen should be sufficiently large compared to the rib spacing 
so that the percentage of the specimen subject to shear-lag effects 
arising at the rib ends is small. 

The use of these tests for the evaluation of a: and p will now 
be described in detail. For ease in discussion, the ribs whose a! and 
B are being sought will be assumed to be oriented in the y-direction as 
shown in figure 5. After the values of c&y and @y have been deter- 

'mined, however, the subscript y should be changed to x or s if, 
in the actual plate, the ribs under consideration are oriented in the 
longitudinal or skew direction of the plate. 

The conditions of the stretching test illustrated in the right-hand 

side of figure 5 are - = - - Substituting these conditions 

in equation (10) and making use of equations (31), (41), (43), (44), 
and (45) gives 
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y..: . ii* . . . . 
I..: 

= EH s 
AY 

Solving for By gives 

By = 
-I 

Awy bx I 
H 

(68) 

where, for rectangular ribs with circular fillets, 
Awy/bx 

H 
is as given 

by equation (56). 

By using for N,/EXIs, in the right-hand side of this equation the 
value obtained in the stretching test, sn experimental value of &, 
or ?Y em 

is obtained (sX is the x-wise strain averaged over at least 

one multiple of bx). 

me conditions of the bending test illustrated in the left-hand side 
of figure 5 are N, = NY = My = 0. 'Substituting these conditions in 

.~g;tion (1) and makingsuse of equations (131, (W), (42), (471, (kg), 
, ad (53) gives 

a% Mx M, __~_. 1 -=-w= 
A *Ax _ 

X - -+(Q - Es)* - 
S 

(69) 

__ 
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where 

I, = + (% - 'x>* 

Ex = aY Awylbx 

A,' H 

Es = 0 

T2 
S 

= I&,* - A 
SM 

Solving for CZy gives 

., .*&+/%2%%2 --~-~~~~~~~~~~~2-*~21 -rijI.+-%-(~2~~2~2)) 

gr= -~ 
~$&+q (I&2- A&A&?) - *@p-k& yz) 

m 

<where, as before, for rectangular ribs with circular.fillets, Awylbx 
H 

is as given by equation (56). 
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r . . 
z.: : 

. . . . = . . . . . 
the value obtained in the bending 

y..: . 
. . . . 

2.: 

test, and for Sy the value obtained from equation (68) permits equa- 

tion (71) to yield an experimental value of 

curvature averaged over at least one multiple of b, The quantities 

respectively, with 

z; =A.& - A, 

A 
Ay = s+ 

Awy bx I 
P H 

I, = I-I %3 3 ( ) l2(1 - cl') Y 

where Ew y is as given by equation (59). 

53 
*s=*x 

i 

I 

' (72) 

Theoretical Evaluation 

Accurate theoretical analysis. of the situations depicted in figure 5 
is difficult. However, it is possible to obtain values of CY, and B 
that underestimate or overestimate the stiffness of the specimens. 

An underestimate is obviously obtained by assuming no part of the 
rib to be effective in resisting transverse stretching or bending in a 
direction transverse to itself. A lower-limit value of S is, therefore, 

p=BL;L=o (73) 

When S is taken as zero the value of cx is immaterial. 
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An overestimate is obtained by analyzing the two specimens shown 
in figure 5 for their small deformations under the assumption that plane 
sections perpendicular to the skin and perpendicular or parallel to the 
direction of ribbing remain plane. The results of such an analysis of 
the two situations illustrated in figure 5 are as follows: 

for the double specimen on the right-hand side of figure 5, and 

+ =- 1 

*3 & 
2 ax I-+ 

(74) 

(75) 

for the single specimen on the left-hand side of figure 5, and where I, 
g, and f are geometric properties of segments of length b, of the 
cross sections shown in figure 5. The letter I represents the moment 
of inertia of such a segment about its centroid, 
taken in the x-direction, 

g is the integral, 
of the reciprocal of the local thickness 

measured in the z-direction, and f is tS2 times a similar integral 
of the cube of the reciprocal of the local thickness. When the ribs are 
rectangular with circular fillets, these quantities are given by the 
following formulas: 

(76) 
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Y0 *me 

Q 
b, =-- & _ 2 3 + twY % -- 
ts ts ts ts H 

+ g' 

bx twy 2qY+tWytS3+f' fF---- - -- 
ts ts ( > %i ts H 

(77) 

(78) 

where g' and f' are functions of the ratio of fillet radius to skin 

thickness plotted in figure 6, Iw px and -X-- is as given by equation (62). 
H3 

The values of Nx EHs, I and MxNH3 a2w 
I 

2 obtained from equations (74) 
ax 

and (75) may be thought of a e experimental results and they may therefore 
be substituted in equations (68) and (71) to obtain values of &L and 
CX~ corresponding to an overestimate of the stiffness of the specimen. 

A lower overestimate of stiffness can be obtained by analyzing, on 
the basis that plane sections remain plane, the single specimen on the 

left-hand side of figure 5 for both Nx/EHsX and Mx NH3 e 
I 

and thus 
ax 

including the localized bending that occurs during stretching. Besides 
being more conservative, the resulting values of o+,L and &L would 
also be more appropriate %f, in the actual plate under consideration, 
there were really only one set of ribs. An upper-limit analysis con- 
ducted entirely on the specimen on the left-hand side of figure 5 would 
yield the following expression to be used in place of equation (74): 

NX -= %3/H 

=X 

12(1~- V*)[$ - ;$)Z+ 1+ *f+,,, 

(79) 

H G 

where h is tS tFmes the integral, taken over a length b, in the 
x-direction, of the square of the reciprocal of the local thichess; 
for circular-filleted rectangular-section ribbing, 
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w h e r e  h ' is p lo t ted in  fig u r e  6 . E q u a tio n  ( 75 )  w o u l d  still b e  u s e d  
fo r  

E V A L U A T IO N  O F  Q ' A N D  B ' 
, 

1  

T h e  c o e ff icients a ' a n d  p ', wh ich  d e fin e  th e  e ffec t iveness o f ' 
a  r ib  in  res is t ing twist ing a n d  shea r i ng  re lat ive to  its long i tud ina l  
a n d  t ransverse di rect ions,  a re  n o t as  read i ly  m e a s u r e d  e x p e r i m e n tal ly  
no r  as  read i ly  b o u n d e d  by  a n  u p p e r  lim it as  a  a n d  p , a l though,  o f 
course,  a  lower- l imi t  st i f fness is o b ta i n e d  by  e q u a tin g  p ' to  zero.  4  

A n  a p p r o x i m a te  eva lua t ion  o f c X ' a n d  p ' m a y  b e  m a d e  by  a s s u m i n g  
th a t th e  s s m e  v o l u m e  o f r ib  m a ter ia l  resists shea r  as  resists t ransverse 
stretching,  th a t is, 

B ', =  P y  (81)  . 

a n d  th e n  by  c o m p u tin g  w h e r e  th is  m a ter ia l  m u s t b e  p l aced  (a') in  o rde r  
to  g ive  th e  p rope r  to rs iona l  st i f fness as  d e te r m i n e d  wi th th e  a id  o f 
re fe rence  6 . T h e  c o m p u ta tio n  o f a ' wi l l  n o w  b e  desc r ibed  in  d e tail .  

Cons ide r  a n  e l e m e n t, l ike th e  o n e  o n  th e  le f t -hand s ide  o f fig u r e  5 , 
hav ing  on ly  y -wise r ibb ing  a n d  sub jec ted  to  a  p u r e  Mxy  load ing .  F r o m  
e q u a tio n s  (3), ( 15 )  a n d  ( 54 )  o n e  csn  so lve  fo r  a 'v in  te rms  o f th e  
m e a s u r e d  o r  c o m p u te d  rat io 

@ %  --=Dl ry  
a *w 

ax  

=  2  E H 3  

I 
a *w J 

M w  ax  ay  as  fo l lows:  

+  2  ts - -- 
l+ p  H  L Y J  

f / 

I-:. f . . .---.. . ._ ._ .._... - ~  -. 



. . 
~.: ; 

24 a NACA RM L53E13a 

l we* 
. . l ? . 

. . . . . . . 
. . . . 

..: 

where 

Solving for cx"Iy gives 

“wylbx 
“Y H 
%3 Awy/bx 
II+ "Y H 

+H % 
% liit3 3 a*w 

*Cl+ PI ax ay 

(83) 

(84) 

The value of the ratio to be inserted in the 

above formula can, in the be derived by an adapta- 
tion of the method used in reference 6 for computing the torsional stiff- 
ness of I-beams and H-beams, which gives 

where d is the diameter of the largest circle which can be inscribed 
in the cross section at the junction of the rib and skin and can-be com- 
puted from the formula 

w 
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and a is a constant whose value depends on twyp and "w YtS* The I 
value of a 

2 
is obtainable from figure 7 of reference 6 or, whenever 

%f 2 0.61 - 0.23 , from the following formula: 
%I 

a = 0.094 + 0.070 - 
% 

(87) 

The meanings of the various terms within the parentheses of equa- 

tion (85) are apparent: represents the contribution of the skin, 

considered as an infinite plate, to the twisting stiffness of the waffle; 

is similarly representative of the twisting 

stiffness of the rib; the term with -0.105 corrects for the fact 
4 

that the rib is actually not infinitely deep; and the term with 

represents the additional stiffness due to the fillets. The value 0.105 
2bW is based on the assumption that 22 2.3; for values of 
twY 

2bW Y twY I 
less than 2.3, the number 0.105 should be replaced by the number obtain- 
able in figure 3 of reference 6 with the abscissa label b/n replaced 
by the label 2bWy/tWy. 

COMPARISONOF CALCULA~DANDEXPERIMENTAL;LYMEASGRSD 

VALUES OF ELASTIC CONSTANTS 

As a partial check on the theory, experimental measurements were 
made of the stretching stiffness' El, bending stiffness Dx, shearing 
stiffness Gk, and twisting stiffness Dxy of plates with integral ribs 
running either longitudinally or transversely (fig. l(a)) or skewed 
(fig. l(c)). The procedures used for the measurement of D, and Dyy - 
were essentially the same as those described in reference 5 for sandwich 
plates. The measurements of El and Gk were made with long-gage- 
length resistance-type wire strain gages mounted in the four corners, 
or diagonally on the four sides, or square-tube compression or torsion 
specimens similar to the square tubes of reference 4. 
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The experimental values obtained for the stiffnesses are indicated 
by the circles in figures 7 and 8. In figure 7 the stiffnesses are 
plotted against the angle of skew of the ribbing (with 9 = O" and 
8 = 9o" corresponding to purely longitudinal and purely transverse 
ribbing, respectively) for plates having nominally the same weight. In 
figure 8, for a given angle of skew (6 = 45O), the variation of the 
elastic constants with skin thickness is plotted. The relatively large 
scatter in the test data is due to the fact that the plates used were 
sand castings and, hence, had appreciable variations in thicknesses from 
one specimen to another and also within each specimen. 

For comparison, theoretical values of the four elastic constants 
were computed from equations (31), (13), (33), and (15) and are plotted 
in figures 7 and 8. The lowest curve in each graph is obtained from 
the lower-limit assumption, f3 = 0; the highest curve gives calculated 
upper-limit values based on the use of equations (74) and (75) in calcu- 
lating % and &,I; the middle (dashed) curve shows the results 
obtainable by using for cx and p values determined experimentally on 
specimens like those in figure 5. In each case it was assumed that 
f3' = ,3, and cx' was computed from equations (84) and (85). Table I 
summarizes the upper-limit and experimental values of a: and p used 
for these calculations. 

In general, figures 7 and 8 indicate that the agreement between 
calculation and experiment is within the experimental scatter, with the 
calculations based on the values aeq and h&p giving the best results. 

CONCLUDING REMARKS 

On the basis of an idealization of integrally stiffened plates to 
more uniform plates resembling plywood, formulas have been derived for 
the elastic ~constants of-the plates with integral ribbing in one or more 
directions. Two sets of elastic-constant formulas have been given, based 
on two different forms of the force-distortion equations. 

The formulas for the elastic constants involve four coefficients 
B, a', and B' 

cx, 
for each rib which define the effectiveness of the rib 

in resisting stretching and bending in its transverse direction, hori- 
zontal shearing, and twisting. Experimental means of determining these 
coefficients are discussed, as are theoretical methods of obtaining 
values corresponding to lower-limit or upper-limit assumptions regarding 
the stiffness of the plate. 

--. - -. 
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The predictions of the formulas for four of the elastic constants 
are compared with experiment and good correlation is obtained when 
experimentally determined values (or, in most cases, upper-limit values) 
of a and S are used in the formulas for the elastic constants. 
Despite experimental scatter, the calculations and experiments agree, 
in general, both in magnitude and in regard to trends resulting from 
variation in angle. of skew of ribbing or in skin thickness. 
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APPENDIXA 

NOMENCLATLTRF: 

Plane I is defined as the plane in which N, acts and in which ex 
is measured. Plane II is defined as the plane in which Nv acts and in 
which eY is measured. 
acts and in which 7 KY* 

PlEine III is defined as the planeyin which NW 
is measured. 

General Symbols 

coupling elastic constants associated with bending and 
stretching and defined by the force-distortion equa- 
tions (l), (2), (4), and (5), lb-l 

%l 
cl2 
c21 

coupling elastic constants associated with bending and 
stretching and defined by the force-distortion equa- 
tions (7), (8), (lo), and (ll), in. 

c22J 

ck 

Dx, Dy 
1 DlJ D2 

DxyJ Dk 

E 

Ex, Ey 
> ElJ E2 

\ G shear modulus of material, psi 

coupling elastic constant associated with twist and 
shear and defined by the force-distortion equa- 
tions (9) snd (12), in. 

bending stiffnesses in x- and y-directions, respec- 
tively, in-lb 

twisting stiffnesses relative to x- and y-directions, 
in-lb 

Young's modulus of material, psi 

extensional stiffnesses in x- and y-directions, respec- 
tively, lb/in. 

shear stiffness of plate in xy-plane, lb/in. 
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. . 
: : M XY MY resultant bending-moment intensity in x- and 
. . . . . y-directions, respectively, lb 
. . 
. . . . . Mxy resultant twisting-moment intensity with regard to 
.:.. . x- and y-directions, lb 
. . 

NX intensity of resultant normal force acting in 
x-direction in plane I, lb/in. 

NY. intensity of resultant normal force acting in 
x-direction in plane II, lb/in. 

intensity of resultant shear force acting in x- and 
y-directions in plane III, lb/in. 

S coordinate, measured parallel to skewed rib, in. 

t coordinate, measured perpendicular to ,skewed rib, in. 

T coupling elastic constant associated with twist and 
shear and defined by the force-distortion equa- 1 
tions (3) and (6), lb-1 

W 

U,'V 

displacement in z-direction, in. 

strain energy, in-lb 

X coordinate, measured in longitudinal direction, .in. 

Y 

2 

coordinate, measured in transverse direction, in. 

coordinate.,'measured perpendicular to faces of skin, 'in. 

shear strain, with respect to x- and y-directions, of 
plane III 

strain of plane I in x-direction and of plane II in 
y-direction, respectively 

CL Poisson's ratio for material 

px, ‘-y 
. 

CL’X’ cl'y 

> Pl, v2 

Poisson's ratios associated with bending in X- and 
y-directions, respectively, and defined by the force- 
distortion equations (l), (2), (7), and (8). 

Poisson's ratios assobiated with extension in x- and 
y-directions, respectively, and defined by the force- 
distortion equations (4), (5), (lo), and (11) 
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Symbols Representing Dimensions 

x-wise and y-wise length, respectivdy, of smallest 
repeating unit of plate, in. 

spacing of skew ribs, equal to b,/sin 8 or byjcos 8, 
in. 

rib spacing (measured between center lines of parallel 
ribs), in. 

rib depth, H - I$, in. 

diameter of largest circle that can be inscribed in 
cross section at intersection of rib and skin, in. 

distance from planes of zero strain to rib centroids, 
in. 

over-all height of rib plus skin, in. 

radius of fillet, id. 

thickness, in. 

angle of skewed ribbing, measured from the longitudinal 
direction, aeg 

Symbols Used in Equations for Elastic Constants 

a constant used in equations for calculating czlUL 

AW,I Aw > A% 
cross-sectional area (including fillets) of x-wise, 

Y y-wise, and skewed ribs hs includes area of two 

> 
( 

ribs , sq in. 

AW general symbol for AWx, AW , or AWs 
Y 

f, Q, h constants used in equations for Cal&dating aUL 
sna RJL 

IWXJ IWyl Iw, cross-sectional moment of inertia of x-wise, y-wise, 
or skewed ribs about their centroids ( PW is twice 
the moment of inertia of a simle skew r?b , 

> 
in. 4 
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k1, kI1, kII1 dimensionless distance from middle surface of sheet 
to planes I, II, asd III, respectively, expressed as 
fractions of the over-all height H 

';Wx' Ew I;w YJ s dimensionless distance from middle surface of sheet 
to centroid of x-wise, y-wise, or skewed rib, 
expressed as a fraction of the over-all height H 

aim aexpJ %L constants used to locate the effective centroid of a 
ax, ay, as 

1 
rib for resisting bending in its transverse direction 

a general symbol representing ax, ay, or as 

a'x, a'y, a's constants used to locate the effective centroid of a 
rib for resisting twisting 

a' 

BLL, pexp, 

px, By' Bs 

general symbol representing alx, sty, or avs 

constants used to define effectiveness of a rib in 
resisting stretching in its transverse direction 

B general symbol representing px, By, or & 

VxY WY, B', constants usea to define effectiveness of a rib in 
resisting shearing 

B' general symbol representing @ lx, ply, or f31s 

Subscripts 

L 

S 

T 

W 

.s, XY Y 

LJI 

ml 

exl! 

sheet or skin 

transverse 

rib (web) 

indicate application to skewed, x-wise, or y-wise ribs 
or directions 

lower limit 

upper l+mit 

experimental 
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APPIZNDIXB 

RELATIONSHIPS BETWEEN NEW AND ORIGINAL ELASTIC CONSTANTS 

The relationships between the new and original elastic constants 
are as follows: 

Dl = 1 
DX 

- c"x% 

D2 = Dy 
l- IlxPY 

Dw Dk = - 
2 

DX = Dl(1 - kc’?) 

Dy = D2(1 - PxyY) 

Dw = 2Dk 

(Bl) 

b2 )  

(B3) 

El = -i_-._._~~..- -- - x 
l - “Exx(l :xb)(c-+ :,, + cell?&+ vxcq 

I - 
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c 

I+= Gw 
l- 2DqGwT2 

Gw = Gk4r 
Dk + ck’Gk 

51 = C=(1 -D;x,) + 14q1 -D;xpJ 

c!,, = cll - kcC21 

Dl(l - w-y) 

%I= ~Y~‘cx(1 -D;x,)+ q1 ?h,) &=w 

c22 = iY(, J)&) + %Jl Zb) cyy = 2+-Y& 

B5) 

036) 

037) 

@9) 

@lo) 

lo 
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mm.0 

l : . . 
e...: . . 

C k = -D=T ck ‘I’=-- 
2Dk 

. . . . 
..: 

~‘%--% cxx 
u - v’x + [ (i&)(~+%%4+~(&)(%+~ 

cc ) 

+“~(~)(c~+~~)+~(~)(c~+~~~ 

l-4 c, l-k% -+- (“xx+ v3x)- cgr(&)(%’ k%x) 1 
~,x _ h,- El{+@ ++g&j 

l+ +&Gg+ c2g5} 

a;~,y+~q&%iJ (%+ VYYJ + cyy(&)bY+ Q-j "~(&)(c-'~Y%~ +%Y(&i&%+~%i~ 

I-% % [ (*)b+"j%-Y) + h(i$)bY+ej 

Fly = 
~-+~;?~~+cz&-~~~ 

1+ E2f&3 + -hizj 



I,- - 

NACA RM L53E13a 

. . 
: 

Y. . 

35 

APPENDIX c 

..: . DERIVATION OF FORMULAS FOR ELASTIC CONSTANTS 
l . . 

: 

The basic assumptions of the analysis have already been described.. 
In the derivations that. follow, where the word "rib" is used, it will 
usually be understood to mean one of the substitute sheets, depending 
on which property of the rib is under consideration. Separate deriva- 
tions are given for the constants associated with bending and stretching 
and those associated with twisting and shear. 

Constants Associated With Bending and. Stretching 

In the derivation of the formulas for the elastic constants asso- 
ciated with bending and stretching, an element of the integrally stiffened 
plate will be considered; the element has the average prescribed curva- 

a2w tures - a2w 
2 and - 

ax ay2 
and the strains ~~ (measured in some arbitrary 

plane which will be referred to as plane I) and ~~ (measured in some 
other arbitrary plane which will be referred to as plane II). The 
development of these prescribed deformations requires the application 
of moments of intensity Mx and My and forces of intensity N, 
(acting in plane I) and NY (acting in plane II). These moments and 
forces and the locations of planes I and II are shown in figure 9. 

If the strains are assumed to vary linearly through the thickness 

of the element, two horizontal planes can be found 
( 
in terms of a2w 

cX, e, and 
ax2 

ay2 
E in which the x-wise strain and y-wise strain, respec- 

tively, are zero. These planes are indicated in figure 10. 

Strains of components of plate.- The longitudinal extensional strains 
of the ribs measured at their cross-sectional centroids can be written in 
terms of the curvatures and the distance between the rib centroids and 
the planes of zero extensional strains. The strains of the x-wise, 
y-wise, and skewed ribs are, respectively, 

a% 
'WXL =h3gp (Cl) 
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'WYL 
a2w = k3 - 
aY2 

a% 
EWSL = hl - 

a% cos'0 + kl - Sill28 

ax2 ay2 

NACA RM L53E13a 

Pm 

(c3> 

where the subscript L denotes longitudinal direction of a rib; the 
subscript x, the x-wise rib; the subscript y, the y-wise rib; and the 
subscript s the skew rib. The distances h3, k3, hl, and kl are 
shown in figure 10. 

The transverse strains of the ribs are as follows: 

'w% = - k2 ( 
a2w 

- """)s 

EW yT = -(h2 - gp,$ 

( h2 > 
a2w cWsT = - - a,H - sin28 - 
ax2 

(G - as,)5 cos2f3 

ay2 

cc41 

@5) 

(~6) 

The extensional strains of the sheet midplane in terms of the curva- 
tures are 

‘S X 
= ‘l+ 2 

a% 
53 

Y = -52 s 

(c7) 

633) 
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a2w The curvatures - =a a2w of the element are also the curva- 
ax 2 ay2 

tures of the x-wise and y-wise ribs, respectively. The curvature of the 
skew ribs is 

apw a% -=- c0s2e + - azw sin28 @9> 
as 2 ax 2 

ay2 

The horizontal shear strain in one of the skew ribs, relative to 
the longitudinal and transverse directions of the rib, can be written in 
terms of the x-wise and y-wise strains at the same level, which in turn 
are determined by the x-wise an& y-wise curvatures; thus, 

_ a'$ & )I sin 8 cos 8 
aY2 

(cm 

The x-wise and y-wise ribs have no shear strain. 

Expressions for the dimensions hl, h2, h3, kl, Q, and k .- 3 
In the derivation of equ&ions (Cl) to (~8) and of equation (ClO), the 
assumption was made that the strains varied linearly from the planes of 
zero strain. On the basis of the same assumption, expressions are 
written for the strains in planes I and II - the planes in which Nx 
NY act and in which cx and ~~ are measured. These expressions are 

from which 

EX = - (5 - kIH - > 
a2w 

ax2 

EY = - 
a% (% - klrH)- 
h2 

m-u 

NW 

$ = kIH - 2 
W 

ax2 

(C13) 
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EY % = kIIH - - 
a2w 

aY2 

(C14) 

By geometry the dimensions hl, h3, kl, and k3 ma;); be written 

hl = EwsH - I+ (C15) 

h3 = EwxH - $ 

kl = r;, H - k2 
S 

k3 = Ew H - k2 
Y 

U-6 > 

(C17) 

W-8) 

where ';wxH; xwyH, EwsH locate the centroidal axes of the ribs from 
the center line of the sheet. Substituting for h2 and k2 from equa- 
tions (C13) ma (C14) gives 

hl = Ew 
S 

2 ax 

m9> 

h3 = (iiwx - kI)H + & 

-2 ax 

kl = ';ws @a 

ay2 

k3 = Ew 
Y (C22.) 
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Evaluation of strain energy.- The total strain energy of the element 
of the integrally stiffened plate can be written as the sum of the strain - - . . 

. . . . 
. 

I... 

,: 

energies of its component parts; thus, 

v+ 
bx 

s 
EW 2EA. dx + 

0 XL Wx 
1 by b,secf3 
2 

s 
+ 

0 
'WYL 'EAwydy i s % 2EAWsds + 

0 L 

s 
% 'WyT2EPpwyaY + 

0 
1 bX 

2 6 "w% 
2Ek@Wxk 

1 s b,secB 
EW 2E&Awsds 

b,se'ce 

2 0 
ds + 

ST 
+ $ 

s 0 
7, 'GB'sAW 

S S 

; 8” s” bsx’ + ES; + 2PEsx~Sy)l _” p2 53d.w + 

EI dx+$ 
WX 

In equation (C23) the first three terms give the energy of exten- 
sion of the ribs in their longitudinal directions, the second three 
terms the energy of extension of the ribs in their transverse direc- 
tions, the seventh term the energy associated with the shearing of the 
ribs, and the eighth term the energy of extension of the skin. The 
next three terms give the energy of bending of the ribs, and the final 
term gives the energy of bending of the skin. 

Carrying out the integrations of equation (C23), dividing by bxby 
to reduce the result to strain energy per unit area, and substituting 
the previously derived expressions for the distortions ~~ 

X’ 
eW , and 

so forth gives Y 
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z... . . I. . 
. . . . . 
. . . . 
.: 9 Aws + py bx + b, 4 8 + p, s+&e f 

\ 

f% 
2 

l+cI 
sin2e c0s2e 

f% sin28 c0s2e - pls 

2(Ewx - kI)H f & 2(+ - kI)H + ~-&& - kI)H COS4e + 

q% - kI)H sin48 + ,@ls(olls - kI)H(& sin28 eX 2 +" 

2 -' 2 ts(kIIH) + f+pws - kII)H sin20 c0s2e + 

. 

q% - kI1) H sin28 cos2e - 

1 Aw, Aw 

- P2 
%+Bx- 

Aws 
by 

+-J+- 
bx -kS 

sin48 + ps cos 4 8 + 

B’S 
2 

1-f-P 3 dkIH) + 

*%i 
- (zws - 

bS 
kI)H sin20 c0s2e + &(a, - kI)H.sin2e c0s2e - 

(Equation continued on next page) 
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. . . . 0 . 0. . 
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**em 

~.: 

qcG - kI)H(& sin28 cos2f3 
I!! 

gY 3 + 2 
c 1 

:lp2 tS(kIIH) + 

B *WX x by ax ( 
Awy - AW - kII)H + T(kwy - kII)H + < - kII) H sin48 + 

- kII)H COS4e f py& - k 
II)H(L 

azw 
l+l.L Ey ay2 + 

%i3 + % + % COS4e + 1 :lJ.2 tS(kIH)2 + 

Aw -XI; 
by ( WX 

- kI)2H2 + 5 ? % 
X ( - "I) 'I-I? + ?[xws - kI)2H2cos40 + 

f%(“s - kI) 2H2sin48 + pfs(afs - 

Sin2e COS2e + A t k k ~2 -p2 &II b 

..,,'+ 

Bs(as - "I)(% - kII)H2siP8 c0s2e - 

~'s(a's - kr)(a's - krr)H2(& 

B !%a _ 
x by ( x kII)2H2 + %E 

b, ( 'Y - kI-)2H2 + 2 
S 

- kII)2H2&48 + 

fqas - k**) 2H2cos4B + p's afs 
( 

_ kII,2H2(* 

0224) 



t. I,, - --- - 

. . 
: : 
. . . . . . . 
. . . . . 
. . . . 
.: 

42 NACA RM L53E13a 

where the identities $ = 1 sin 8 and 
X bs 

stituted to simplify the expressions. 

cos 8 have been sub- 

Invoking the principle of virtual displacements by differentiating 
the enerQy expression (C24) with respect to each of the strains and. 
curvatures and dividing by EH or EH2 gives the following expressions 
for the forces and mome‘nts: 

avf 1 _ Nx', 
ZpE-zi 

* 

AWxlbY 
= 

Awy/bx "Ws/bs 
H +bH+ H f ps sin48 + 

, 

CI % AWs/bs 
2H+ H c0s2e + 

-k 

@S sin28 c0s2e - pls 2 sin28 c0s2e 
1+-P 1 1 ) ~~ f -I- 3%' 

l-p2 H 

Awx~(~wx - kI) + By ""'ibx(% - kI)+ Aw{bs~ws - kI)cos48 + 

&(cx, - kI)sin48 I- pfs(afs - kI)(& sin28 cos28 H 2 + 

{- 

t 

1 
w SkII+ 

- p2 H 
Aw<bs((i;W, - kII)sin2e c0s2e + 

ps(as - kII)sin2f3 cos28 - B's(a's- kII)(& sin2e cos2e H 5 

(C25) 
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avf 1 NY --=- 
aEy EB EH 

%i 
H+ 

Aws/bs 

H c0s2e + ps sin2e c0s2e - 
CL2 

2 B's - 1 93 -+& 
AWx/bY Awy/bx 

1+/J - $ H H + H + 

AWps 2 
H + ps c0s4e f pf - s1+p ~~ + 

-p “Sk1 + 
_ ,$ H 

Aw/bsEws - %)sin28 c0s2e + 

- kI)sin28 c0s2e - H$ + 

-1 % AwxlbY 
- kII + Bx H (+ - '11) - p2 H 

Aw~bs~Ews - 1CII)sin48 + &(a, - k-Jcos48 + 

Bfs(afs - kII * sin20 RW 
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. . 
: : avf 1 Mx -- 
l .e 

. . 
. . 

a2wGF= m2 

. . . . 
as 

. 

. . . . = 

.: 
- "I) + By Aw$bx(a, - kI) + 

AWs/bs 
H c ( 

';Ws - kI)cos48 + &(cxs - kI)sin4e + 

fqp's - kI)(-& sin20 Ipp2 ; kI + 

Aw~bs~ws - kI)sin28 cos28 + &(ol, - kI)sin29 cos28 - 

kJ2 + 

*WY/b, 

BY --r(% - kI)2 + *‘ibs Ews - kI)2c0,4e + 

B,(ar, - kI)2sin4e + pfs(cxfs - kI)2(& sin28 c0s2e 
3 

H gw + 
SF 

{u(lt p2)(z)3 + IwgS sin20 c0s2e + 1 rp2 2 kIkII + 

AwibSEi&s - kI)(Ews - kII)sin2e cos2e + 

Bs(as - &,>(a, - kII)sin2e c0s2e - 

pq-& - kI)(cPs - kII)(& sin28 (C27) 
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. . 
.: . a’ 1 -_ EL 
z... 
=. l : 
z...: 1 . 
. . . . 
.: - kI1) sin20 cos2e + 

BB(% - kI&sin2e cos2e - ,31s(011s - kIti- 
G +P 

-1 ts Awx/?Y 
--kTI+'x H (%-"11)+ 

Aw#x - 
_ 3 H H (kwy-k&)+ 

v[gws - kII)sin49 + &(cx, - kII)cos4 6 f 

BqG - kII)(& sin2e c0s2ejjjcy +{*(g)3 + 

IW,/bS t&S 
H3 

sin20 c0s2e + A - kIkII + 
- p2 H 

A~s~bs~.ws - kI)(Ew,'- kII)Sin2e c0s2e i. 

p,(a, - kI)(as - kII)sin2e c0s2e - 

B's(a's - kI)(a', - kII)(& sin2e cos2e 

B 
H 2 + 

{utlt p2J(:)3 + "ix + Iwps sin48 f- 1 -Ip l$(kII)2 + 

- kII)2 + H (hy - kII)2 + Aw~bs~ws -kII)2sin4e+ 
L 

q(a, _ kII)2COS4e + &@&! - kII)2(& sin2e ‘Os2’ 

8 
H 5 
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The equations for N,, Ny, M,, and My (eqs. (C25) to (~28)) CSJI 

be written as 

NX - = A,s,+ A,sy + Ax(cx - kI)H h2W 2 + A,(& - k&J $ m.9) EH ax 

2 = ASsX + Aysy + A& - kI)H 5 + A&r - k& $ (C30) 

M, - 2 = &(iZx - kI)ex + As& - k&y + Lx + &(Ex-- k,)jHs+ 

b + As&s - kI)& - kI3 H f (c31) 

' - A& - k+x + Ay(Ey - k+y + --- 
EH2 

Es + A,(% - kI) (5 - %J H f + [% + A&G - %1)+-I 3 
(C32) 

where A,, A, and so forth, are given in equations (43) to (54). 

In order to identify the desired elastic constants associated with 
extension and bending, the foregoing force-distortion relationships, 
equations (C29) to (C32), need only to be put into the form of equa- 
tions Cl), (2), (4), =a (5) or (7), (8), (1% d (IJ-). 

Constants Associated With Twisting and Shearing 

The derivation of the formulas for the elastic constants associated 
with twisting and shearing is a parallel one to that for the bending and 
stretching constants. 
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An element of the integrally stiffened plate will be considered 
sew which has the average prescribed twist - ax ay and shear strain 7 KY 

(measured in some arbitrary plane which will be referred to as plane III). 
These prescribed deformations can be effected by the application of 
twisting moments of intensity M,cy and shearing forces of intensity NW 
(acting in plane III) to the element (see fig. 11). 

If the horizontal shear strain is assumed to vary linearly through 

the thickness, the horizontal plane can be found 
( 

azw in terms of - 

. ) 

ax ay 
and 7 xy which has zero shear strain. This plane is shown in figure 12. 

Strains of components of plate.- The extensional strains of the 
longitudinal and transverse and one of the skew ribs in their longitu- 
dinal directions at their centroids are 

“WXL 
= O# 

ewYL = O " 

&33> 

cc341 

EW = +h' a2w 
sL 1 ax ay sin 2ed 

The transverse strains of the ribs are 

cc351 

“wxT = O 5 

Ew =oJ 
YT 

EW = f h' 
ST 2 - cxsH)* sin 28 d ax ay 

(C36) 

cc371 

(C38) 

- 
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The extensional strains of the sheet are 

ESX 

ES Y 

The twist a% - causes bending of ax ay 
one of these ribs is given by 

= ov (c39) 

= OU (c40) 

the diagonal ribs. The curvature of / 
d 

3% = a2w sin 28 J’ -- 
as 2 ax ay 

I$- 
? ,’ *,;>q/ ?J- 

(c41) 
11 
&J -i i$ 

The curvatures of the longitudinal and transverse ribs are zero. The 
shear strain in the skin middle surface is given by 

The magnitude of the shear strain of the diagonal ribs is given by 

7w, = ,2(hf2 - dsp ) 
a2w ax ay c0s. 28 (c43) 

(~42) 

The shear strain of the x-wise and y-wise ribs is given by 

7wX 
= -2 h'2 

rwy = - "( h12 I - WyH& 

(c44) 4% 

W45) 

Expressions for the dimensions h'l and hf2.- The following 
expressions can be written for the strains in plane III (the plane in 
which NV acts and in which rxy is measured, see fig. 11): 

7xy = -2(ht2 - kIIIHj- ' a% J 
ax ay 

from which 

Cc461 

cc471 

L - 
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By geometry 

c. 

L; = kw,H - ttz. e i c(t (, 4 / 
t 1 

’ g 
..C.L$. 

h'l = xWsH - h12 (~48) 

Substituting for hf2 from equation (C47) gives 

h'l = ( Ew 
S - k111)H+ W9) 

Evaluation of strain energy.- The total strain energy can be 
written as 

“, ; 

xsece 
=- eW 2EAWsds 

sL _ _-J ,. 

7wy2CB'yAydy + 

>( lc ,.I:, ,” il? yQ% 

1 
s 

b,sece 

2 0 
7W %lsAwsds 

S 
+ ; 

,j I\<! , ' : f I' ,!.$. j 

+ $ ~sece o'EIw;ds (C50) 

.7 IJl :/..s, G 1. 1 

In equation (C50) the first term gives the energy of extension of 
the skewed ribs in their longitudinal directions, the second term the 
energy of extension of the skewed ribsin their transverse directions, 
the next three terms the energy of shearing of the ribs, and the sixth 
term the energy of shearing of the skin. The next term represents the 
energy of twisting of the skin, and the last term gives the energy of 
bending of the skew ribs. 

Carrying out the integrations of equation (C5C), dividing by bxby, 
substituting previously derived expressions, and so forth, gives 

I- - 
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c0s2e +fps SiGe c0f32e + pfs 1 J 

20 + CL) 7qy2 + 

1 AWY 
20 + CL) B'Y b, "Y ( - kIII)H + %{iiws - kIII)H sin28 cos28 + 

B,ps - kIII H sin20 c0s2e + ) 

Bfs(afs - a% 
7w ax + ts3 + 

IWS 4- 
bS 

sin28 c0s2e + & ts(kIIIH)2 + 

2 
B'X kIII 

2 2 AW 
l+!J 

+ -- 
l+cI "y bx -WY - ( kIII)2H2 + 

- kIIS2H2sin2f3 c0s2e + ps as 
( 

- kIII)2H2sin28 cOsee + 

B's aIs ( - kIII)2H2 2(11+ ~) 
c 

(c51) 
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Differentiating the energy expression (C51) with respect to each 
of the distortions and dividing by EH or EH2 gives the following 
expressions for the forces and moments: 

avlL2%Y 
a7, EH EH 

53 1 "PI 
p) --ii- + 2(1 + p) 

1 
+ a1 + I.4 

Awy/bx 
x H “Y H + 

Aws ps 
H C 

sin28 c0s2e + ps sin20 c0s2e + 

-1 ts 
d 

co828 

J! i 
7xY +2 - kII1 + 20 + cl) H 

1 AWylbx 
20 + iJ> "x H kfx - kIII) + 

AWypx 
& “Y H (% - ‘*I*)+ 

- kIII 
> sin28 c0s2e + B, 01~ ( - kIII > sin20 c0s2e + 

azw 
' ax ay (C52) 

L- 
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au' 
a% 

a,,, 

=2 % 
cl) x kIII + 2(1; cl) ‘lx 

AWX/by 
H (oIrx - ‘III) + 

1 AwypJx 
2(1 + CL) “Y H - kII1) + 

Aw,/bs c 

H { ( WS - kIII > sin28 c0s2e + f3, as 
( - kII1) sin2e cos2e + 

B's(arS - 
c 

1 
klllJ 2(1 + p) cos22q})7W + (,,,: p)($)3 + 

4 lws/bs sin28 c0s2e + A.-- - % 
H3 1 + p H kIII ( 1 2, 

2 
l+P 

FIX Awx/% 
H ( cPx - kII1 1 2+ 

2 
l+cL 

@I, AwYlbx 
H ( arY - kII1 ) 2, 

4 AW,/ (Cws - kIII)*sin2e c0s2e + 
H C 

fs,(cl, - kIII)2sin28 c0s2e + 

B'g(oLfs - kIII 2 2$+ cl) 
t- 

H & (c53) 
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The equations for NW and MW (eqs. (C52) and (C53)) can be 
written as 

2 = hrW + 2Axy(-% - kIII)H & (C54) 

22=2qy.(&- 
C )I 

a% 
%11)7xy + Ixy + $&qy - kIII 2 H ax (c55) 

where G, -%, anti Iv are given in equations (46), (50), and (54), 

respectively. 

Equations (C54) and (C55) may readily be put into the form of 
equations (6) and (3) or (12) and (9) to yield either the original or 
the new elastic constants, respectively. 
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. . . : TABIXl . . . . . . . 0. . 
l :...: VALUES OF CX, ac', B, J&D B' USED IN THE CALCULATION OF 

. . . . . 
. . . . 

THE ELASTIC CONSTANTS FOR COMPARISON WITH EXPERIMENTAL 

MEXSUREMENTS OF El, s, D,, AND D w 

bw/ts I aexp % “P’=& @exp BUL 

bw/bS = 0.2 (4 
1 0.24 0.25 0.45 0.25 0.20 0.66 c -17 -15 -33 .24 

.12 .085 
8 

.43 
-23 l 45 

.004 .046 -53 2; .14 -29 
.I2 -19 

bw/bs = 0.4 

,b) , 
1 ----- mm-- ---- 

t 
--B-w --mm --em 
0.14 0.44. 

8 
0.14 

m-e-- ---- ---- 

(84), 
Slri?lese values, computed from equations (68), (71), (74), (75), 

and (85) were used for calculating constants for all configura- 
tions given in figures 7 and 8 except those for which 8 = Oo and 
8 = go0 -(one-way stiffening). 

(84), 
bThese values, 

and (85) 
computed from equations (68), (71), (75), (79), 

were used for calculating constants for configurations 
of figure 7 having 8 = 0' and 8 = 90'. %zgzJ7 

. 
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Subject Number 

Plates, Flat - Stiffened 4.3.3.1.2 

ABSTRACT 

Formulas are derived for the elastic constants of plates with 
integral ribbing. The constants, which include the effectiveness of the 
ribs for resisting deformations other than bending and stretching in 
their longitudinal directions, are defined in terms of four coefficients, 
and methods for the evaluation of these coefficients are discussed. 
Four of the more important elastic constants are predicted by these 
formulas and are compared with test results. 
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